

Ahsanullah University of Science and Technology
Department of Electrical and Electronic Engineering

LABORATORY MANUAL

FOR

ELECTRICAL AND ELECTRONIC SESSIONAL COURSES

Student Name :

Student ID :

Course No. : EEE 4232

Course Title : VLSI II Lab.

For the students of

Department of Electrical and Electronic Engineering

4th Year, 2nd Semester

EEE 4232 VLSI II Laboratory

Table of Contents

Lab-0: Overview of VLSI-II Laboratory .. 1

Lab-1: Introduction to Verilog HDL Programming .. 6

Lab-2: Introduction to Functional Verification Using Verilog Testbench.. 32

Lab-3: Modeling Sequential Systems and Finite State Machine Using Verilog HDL 49

Lab-4: Introduction to Unix Shell .. 61

Lab-5: Synthesis using Genus Synthesis Solution ... 69

Lab-6: Physical Design Using Encounter Digital Implementation System (Part 1) 77

Lab-7A: Physical Design Using Encounter Digital Implementation System (Part 2) 100

Lab-7B: Static Timing Analysis Using Encounter Digital Implementation System 114

Lab-8: Physical Verification and Power Analysis Using Encounter Digital Implementation System 124

References and Acknowledgment .. 133

Page 1 of 133

Lab-0: Overview of VLSI-II Laboratory
Objective

The main objectives of this lab are:

• Familiarization with Application Specific Integrated Circuits (ASIC) design flow.

• Overview of the VLSI-II lab.

Introduction

To design very large-scale integrated circuits some frontend and backend processes needed to

be acomplished. The processes can be represented as a flow chart to show the life cycle of a chip

which is called Application Specific Integrated Circuits (ASIC) design flow. A typical ASIC design

flow is shown below.

Figure: ASIC design flow

Page 2 of 133

System Specification
Design functionality, performance factors (speed, power, latency, throughput, dimension,
data size), cost, I/O requirements etc are clearly stated at this stage.

Architectural Design

Determines required different architecture blocks to implement the design to maximize the
performance factors. It also determines the algorithm for optimized connection of the
blocks and formal verification is performed.

Design Implementation
The system can be designed in two ways: analog design and digital design. In the analog
design process, circuit blocks are designed at the transistor level. On the other hand, the
synthesizable RTL description of the device is programmed using Hardware Description
Language (HDL) in the digital design process. HDL Programming can be easily implemented
for any modern complex device as it gives the advantage of simulating and verifying the
design output and functionality efficiently.

Functional Verification and Testing
Functional simulation is performed in this stage, and the logic of the system is verified using
timing simulation and test vectors. If the functionality doesn’t match the Function should
be designed again

Logic Synthesis
The process of translating the RTL into a gate-level netlist is called Synthesis. In this process,
the design is optimized, and technology mapping or library binding is done. The gate-level
netlist must undergo formal verification to prove that RTL and netlist are equivalent.

Physical Design
Physical Design is the process of transforming a circuit description into a physical layout that
describes the position of cells and routes for the interconnections between them. The
physical design consists of the following steps.

▪ Design Import & Timing Mode Setup
▪ Floorplanning
▪ Creating Power Mesh
▪ Cell Placement and PreCTS optimization
▪ Clock Tree Synthesis and PostCTS opt
▪ Routing and Post-Routing Optimization
▪ Metal and Standard Cell Fill

Page 3 of 133

Verification and Signoff
Verification would either be just before the tapeout stage of the chip or the stage where
design is again taken back through the same flow for optimization. The following
verifications are usually performed in this stage.

▪ Design Rule Check (DRC): It checks design rules such as shapes/size/spacing and
many other complex rules of each metal layer.

▪ Layout vs Schematic (LVS): It checks whether the design layout is equivalent to its
schematic.

▪ Antenna Rule Check (ARC): Checks for a large area of metals that might affect the
manufacturing process.

▪ Electrical Rule Check (ERC): The methodology used to check the robustness of a
design both at schematic and layout levels against various electronic design rules.

After all verifications, post-processing is applied where the physical layout data is translated
into an industry-standard format called GDSII. The GDSII file is sent to the semiconductor
foundry to convert it into mask data which is called tapeout. GDS II is a database file format
that is the industry standard for data exchange of integrated circuit or IC layout artwork. It
is a binary file format representing planar geometric shapes, text labels, and other
information about the layout in hierarchical form. It is also referred as Graphic Design
System.

Fabrication
The mask of physical design is sent to factories called fabs(clean room). Several masks are
used in turn, each one reproducing a layer of the completed design Masks are used to create
a specific pattern of each material in a sequential manner and create a complex pattern of
several layers Introduction
For fabricating an IC in the clean room following steps are performed.

▪ Wafer Preparation
▪ Oxidation
▪ Lithography (Photoresist & Masking)
▪ Etching
▪ Dopant Incorporation (Diffusion & Ion Implantation)
▪ Crystal Epitaxial Growth
▪ Deposition
▪ Isolation
▪ Cleaning

Packaging & Testing
After fabricating the chip in a clean room, it should pass some specific tests before
commercial use. If all test is confirmed it is packaged and sent to the consumer.

Chip
The final output of the process is a chip.

Page 4 of 133

EDA Files

Liberty Timing File (.lib file)

ASCII representation of the timing and power parameters associated with any cell in particular

semiconductor technology. Types of lib file Fast lib, Slow lib, and Typical lib. Basic differences

among those libraries are Nominal voltage Nominal temperature cell leakage Power Capacitance,

Fall power, Rise power, and Timing.

Library Exchange Format (.lef file)

LEF is a specification file for representing the physical layout of an IC in an ASCII format. It contains

library information for a class of designs. It mainly contains Layer information, Via information,

Placement site type and origin, and Macrocell definitions.

SDC (Standard Design Constraint)

The Standard Design Constraint format is used to specify the design intent, including the timing,

power and area constraints for a design.

Cap table

Cap table contains information of parasitic Resistance and Capacitance which is used to model

the interconnect of a design.

Cdb (Celtic Database)

For signal integrity analysis besides lib files, the tool required the .cdb files also. The main issues

of concern for signal integrity are Ringing, Crosstalk, Ground bounce, Distortion, Signal loss,

Power supply noise.

Commonly used EDA Tools

Function Tools
Analog Design Cadence Virtuoso, HSPice, LTSpice

Cell Layout Design Cadence Virtuoso Layout Suit

RTL Coding Cadence NCSim, ModelSim, Quartus

Synthesis Cadence Genus, Yosys Open Synthesis Suite

Physical System Design and STA Cadence Encounter, Innovus

Verification Cadence Assura, Mentor graphic Calibre

Page 5 of 133

Probable List of Lab Tasks

The following processes of VLSI ASIC design flow will be covered in the upcoming classes.

Front End Process

▪ Verilog HDL programming language.

▪ Functional Verification using Verilog Testbench.

▪ Modeling Sequential Systems and FSM using Verilog.

▪ Synthesis

Backend Process

▪ Physical Design

▪ Static Timing Analysis

▪ Physical Verification and Power Analysis

Assessment Procedure and Marks Distribution (Tentative)

Assessment Type Percentage
 i) Continuous Performance 10

 ii) Lab Test-1 20

 iii) Lab Test-2 25

 iv) Assignment 15

 v) Project 30

Total 100

Page 6 of 133

Lab-1: Introduction to Verilog HDL Programming

Objective

The main objectives of this lab are:

• Basic terminology of Verilog HDL programming.

• Familiarization with different levels of Abstraction in Verilog HDL.

• Simulating Verilog HDL using ModelSim.

Introduction

A system or chip can be designed in two ways: analog design and digital design. In the analog

design process, circuit blocks are designed at the transistor level. Nowadays high performing

chips are designed with more smarter functions and that has increased the density of the

transistor in a chip. In VLSI (Very Large-Scale Integration) technology chips are designed with

more than 100,000 transistors. So it is not easy to design and verify such a complex system in an

analog process. In the digital design process, according to the functionality of a chip, a

synthesizable RTL description of the system is modeled using the Hardware Description Language

(HDL). HDL gives the advantage of simulating and verifying the design output and functionality

easily before they were fabricated on chips. For a long time, programming languages such as

FORTRAN, Pascal, and C were used to describe sequential computer programs after that

Hardware Description Languages (HDLs) came into existence to model the concurrency processes

found in hardware elements. Some common HDLs are Verilog, System Verilog, VHDL, VerilogA.

Verilog Module

Modules are the building blocks of the Verilog design. Modules can be embedded within other

modules, and a higher level module can communicate with its lower-level modules using their

input and output ports. A module should be enclosed within a module and endmodule keywords.

The following figure shows the structure of any Verilog module.

Page 7 of 133

Port Types

Port provides the interface by which a module can communicate with the internal and external

environment. Based on the direction of the signal Verilog language allows three types of ports.

Ports can be declared as follows.

Type of Port Verilog Keyword

Input port input

Output port output

Bidirectional port inout

Data Types

Verilog language has two primary data types called Nets and Registers.

1. Nets
• Represents structural connections between components.

• Declared as ‘wire’.

• By default, one bit.

• All port declaration are implicitly declared as wire in Verilog

2. Registers
• Represents the variables used to store data.

• Declared as ‘reg’.

• Stores/holds the last assigned value until it is changed.

• Must use register data type if a signal is assigned in procedural

In Verilog, “parameter” is used to declare constants and does not belong to any other data type such as register
or net data types. A constant expression refers to a constant number or previously defined parameter. We cannot
modify parameter values at runtime, but we can modify a parameter value using the “defparam” statement. In
modern RTL design, “localparam” is used to declare constants.

Port Connection Rule

Verilog simulator shows violations if port connection rules are violated.

Page 8 of 133

* The number of binary
bits the number is
comprised of.
*Default is 32 bit

1. Input
• Internal input ports must always be net (wire) type.

• External input ports can be connected to reg or net type.

2. Output
• Internal output ports can be either reg or net type.

• External outputs must be net type.

3. Inouts
• Internally and externally inout ports must be net type.

• They are bidirectional.eg-power, ground, etc.

4. Width Matching
It is legal to connect internal and external items of different sizes when inter-module port

connections. However, a warning is typically issued that the width does not match.

5. Unconnected Ports
Verilog allows ports to remain unconnected. For example, a full adder module has three

inputs (A, B, C) and two outputs (sum, carry). So, if we don’t want to use any of the inputs

or outputs during the submodule call, we simply ignore that by keeping the place blank.

Example if a module is full_add(A, B, C, SUM, Carry) during the submodule call if we want

to ignore the C input can write as full_add a1(x,y, ,z,l)

Literals

Literals are used for representing constant numbers. The syntax for a constant is shown below.

<size>’ <sign><base> <number>

*Indicates if the number is

signed.

*Either s or S.

*Not case sensitive.

*Default is unsigned

*Radix of the number.

*Binary: b or B

*Octal: o or O

*Hexadecimal: h or H

*Decimal: d or D

*Not case sensitive.

*Default is decimal.

Number

according to

base.

Page 9 of 133

Example 01

The following example demonstrates the Verilog syntax for different literals and data types.

1
2
3
4
5
6
7
8
9

10
11
12
13

parameter a,b,c,d,e,f,g,h; // declaration of multiple variables of parameter type

reg [7:0]i;
reg[7:0]j;
a=549;
b=4’bx;
c=8’hfx;
d=‘h8FF;
e=5’d3;
f=8’b00001011;
g=8’b0000_1011;
h=8’b1011;
i=4’sb1011;
j= - 4’sb1011;

// reg type variable declaration which can store up to 8-bit
// reg type variable declaration which can store up to 8-bit
// decimal number 549, no size specified
//4-bit unknow value xxxx
// 8-bit number equivalent to 8b1111_xxx
// hex number, no size specified
// 5-bit decimal number 00011
//8-bit binary number 00001011
// “_” is a separator used to improve the readability of 8-bit number 00001011
//8-bit binary number 00001011
// 4-bit positive signed number 00001011
//initializes with 1011 then for negative sign 2s complement is performed which
is 0101 then 4 zeros are padded for signed value 00000101

Example 01 is not a complete Verilog Module it just demonstrates the syntax

Verilog Operators

To represent the functionality of a digital system different operators such as logical, bitwise, etc.

operators must be used. In the following table, different Verilog operators are shown.

Table demonstrating different operators

Page 10 of 133

Example 02

The following example demonstrates the basic logical syntax of basic logical operation used in

digital system representation. We can represent the logical expressions in two ways called Gate

Instantiations and Continuous Assignment.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

module gates(A,B, Yn,Ya,Yo,Yx, Zn,Za,Zo,Zx);
// Gate Instantiations
output Yn,Ya,Yo,Yx;
input A, B;
not g1(Yn,A);
and g2(Ya,A,B);
or g3(Yo,A,B);
xor g4(Yx,A,B);
// Continuous Assignment
output Zn,Za,Zo,Zx;
assign Zn=~A;
assign Za=A&B;
assign Zo=A|B;
assign Zx=A^B;
endmodule

Verilog Modeling Styles

Digital systems are generally modeled in four ways called Switch-level modeling, Gate level or

structural modeling, Data flow modeling (DFM), and Behavioral modeling.

N.B: RTL is a combination of Data Flow and Behavior Modeling styles. The logic synthesis tool
can generate a gate-level netlist from RTL.

1. Switch level Modeling

This method provides mechanisms for modeling MOS transistors using Verilog. This

modeling style is used in very specific cases, for designing leaf cells in a hierarchical design.

Switch-level modeling is not detailed enough to catch many of the problems.

Page 11 of 133

Example 03

The following example demonstrates the Verilog HDL code of an CMOS inverter using the switch

level abstraction.

 CMOS Inverter

1
2
3
4
5
6
7
8

module inv_cmos(in,Y);
input in;
output Y;
supply1 vdd;
supply0 gnd;
pmos p1(Y,vdd,in);
nmos n1(Y,gnd,in);
endmodule

2. Gate level or structural modeling

In this method, a system is designed using predefined gates or user-defined

primitives. It is white box modeling because every design is visible inside the design.

It is the lower level of abstraction.

Page 12 of 133

Example 04

The following example demonstrates the Verilog HDL code of a two to one multiplexer module

using the gate level abstraction.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/*
Steps for Gate Level Modeling
I. Develop the Boolean function of output
II.Draw the logic diagram.
III.Connect the gates with nets(wires).
*/
module mux_2to1(s,Io,I1,Y);
input s,Io,I1;
output Y;
wire w1,w2,w3;
not (w1,s);
and (w2,Io,w1);
and (w3,s,I1);
or (Y,w2,w3);
endmodule

3. Data flow modeling (DFM)

In this method, a system is designed by specifying the data flow between input and

output. It uses continuous assignment statements to drive a value on a net or wire. It

is a higher level of abstraction than the gate level. It may be either black-box modeling

or white-box modeling depending on the design complexity.

Example 05

The following example demonstrates the Verilog HDL code of a two to one multiplexer module

using the data flow modeling.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/*
Steps for Data Flow Modeling
I.Obtain the relation between output and input.
II.Impalement the logical relation using “assign” statement.
*/
module mux_2to1(s,Io,I1,Y);
input s,Io,I1;
output Y;
wire w1,w2,w3;
assign w1=~s;
assign w2=Io & w1;
assign w3=s & I1;
assign Y=w2 | w3;
endmodule

Page 13 of 133

4. Behavioral modeling

In this method, a system is designed and implemented in terms of a design algorithm

based on the behavior of the design and its performance. Verilog behavioral code

must be inside procedural statements/blocks only. It is the highest level of

abstraction. It is also known as black-box modeling.

Procedural Block

There are two types of procedural blocks in Verilog called “Initial” and “always” blocks.

Procedural blocks are evaluated in the order in which they appear in the code that’s why it is also

known as sequential statements. Procedural statements assign values to reg, integer, real or time

variables. Procedural blocks cannot assign values to nets.

a) “initial” Block
• Statements inside the initial block are executed only once.

• Executes at time zero.

• Used in Test bench

b) “always” Block
• Sensitivity list or list of signals that directly affect the output result must be

defined in always block.

• Whenever the value of a signal in the sensitivity list changes then the statements

inside the always block is executed.

always @ (sensitivity_list)
begin
 [procedural assignment statement]
 [if-else statement]
 [case statement]
 [while, repeat and for loops]
 [task and function calls]
end

Example 06

The following example demonstrates the Verilog HDL code of a two to one multiplexer module

using the behavioral modeling style. The always procedural block is used here to set the output

of multiplexer(y) whenever any of the inputs (Io and I1) or selection input (s) changes.

1
2
3

/*
Steps for Behavioral Modeling
I.Develop a behavioral algorithm (like ‘C’ programming).

Page 14 of 133

4
5
6
7
8
9

10
11
12
13
14
15
16
17

II.According to the algorithm insert the behavioral statements inside the appropriate procedural
block
*/
module mux_2to1(s,Io,I1,Y);
input s,Io,I1;
output reg Y;
always@ (s,Io,I1) //if we use always @* The * operator will automatically identify all sensitive variables.
begin
 if(s==0)
 Y=Io;
 else
 Y=I1;
end
endmodule

Hierarchical Modeling

A Hierarchical methodology is used to design simple components to construct more complex

components There are two design approaches when writing code in a hierarchical style called

Top-Down and Bottom-Up methodology.Typically, designers use these two approaches side-by-

side to construct complex circuits.

1. Top-Down Methodology
In a top-down design methodology, we define the top-level block and identify the sub-

blocks necessary to build the top-level block. We further subdivide the sub-blocks until

we come to leaf cells, which are the cells that cannot further be divided.

Figure: Block representation of Top-Down methodology

Page 15 of 133

2. Bottom-Up Methodology
In a bottom-up design methodology, we first identify the building blocks that are available

to us. We build bigger cells, using these building blocks. These cells are then used for

higher-level blocks until we build the top-level block in the design.

Figure: Block representation of Bottom-Up methodology

Example 07

The following example demonstrates the Verilog HDL code of a full adder following the

Hierarchical Modeling style. In the design, the half adder is constructed from the predefined logic

gates and then the half adder instance is used twice to design the full adder. This creates two

instances in the same module.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

module Full_Adder(A,B,Cin,sum,carry); // Top module
input A,B,Cin;
output sum,carry;
wire s1,c1,c2;
Half_Adder sm1(s1,c1,A,B);
Half_Adder sm2(sum,c2,s1,Cin);
or o1(carry,c1,c2);
endmodule

module Half_Adder(s,c,x,y); // macro cell
input x,y;
output s,c;
xor s1(s,x,y); // predefined primitive or leaf cells
and c1(c,x,y);
endmodule

N.B. One module can be instantiated to another module without maintaining the I/O sequence
using the Namely Wise Instantiation method (.currentmodule_variable(submodule_variable)).

Page 16 of 133

Blocking and Non-Blocking Assignment

Blocking (=) and non-blocking (<=) assignments are provided to control the execution order

within an always block. All the previous examples of combinational circuits used blocking

assignments. But if the subsequent assignments depend on the results of preceding assignments

non-blocking assignments needed to be used. The following examples demonstrates the use of

blocking and non blocking assignments.

Example 08

In the following example, we have tried to design a shift register module named shift_reg using

the blocking assignment.

1
2
3
4
5
6
7
8
9

10
11

module shift_reg(clock,W,Q);
input clock,W;
output reg[3:0]Q;
always@(posedge clock)
begin
 Q[3]=w;
 Q[2]=Q[3];
 Q[1]=Q[2];
 Q[0]=Q[1];
end
endmodule

Now let us try to realize the output of Example 07 for that let us consider Initially Q=0000 and

W=1. Now for the first two positive edges of the clock, the output will be following.

Output
//After the first positive edge of the clock

Q[3]=W=1;
Q[2]=Q[3]=1;
Q[1]=Q[2]=1;
Q[0]=Q[1]=1;

//After the second positive edge of the clock
Q[3]=W=1;
Q[2]=Q[3]=1;
Q[1]=Q[2]=1;
Q[0]=Q[1]=1;

Now from the output, we can notice that the output is always the same. For a shift registrar, we

know that the output will propagate bit-wise sensing each clock trigger but in the design of

Example 08 that is absent due to the use of blocking assignment as the variable update is

executed in the order they are coded. It should be noted that the blocking assignment blocks the

Page 17 of 133

execution of the next statement till the current statement is executed. So, it can be said that

blocking assignment is useful for combinational circuits.

Example 09

In the following example, we have modified the shift_reg module of Example 08 by replacing

the blocking assignment with “non-blocking”.

1
2
3
4
5
6
7
8
9

10
11

module shift_reg(clock,W,Q);
input clock,W;
output reg[3:0]Q;
always@(posedge clock)
begin
 Q[3]<=w;
 Q[2]<=Q[3];
 Q[1]<=Q[2];
 Q[0]<=Q[1];
end
endmodule

Now let us try to realize the output of Example 08 for that let us consider Initially Q=0000 and

W=1. Now for the first two positive edges of the clock, the output will be following.

Output
//After the first positive edge of the clock

Q[3]=W=1
Q[2]=Q[3]=0
Q[1]=Q[2]=0
Q[0]=Q[1]=0

//After the second positive edge of the clock
Q[3]=W=0
Q[2]=Q[3]=1
Q[1]=Q[2]=0
Q[0]=Q[1]=0

Now from the output, we can notice that the output is propagating bit-wise by sensing each clock

trigger after using the blocking assignment as the variable update process is executed in parallel.

In this code execution of the next statement is not blocked due to the execution of the current

statement. This method is useful for modeling sequential circuits and generating concurrent

statements.

There are three types of assignments in Verilog, continuous (assign), blocking (=), and non
blocking (<=).

Page 18 of 133

Example 10

The following example demonstrates the Verilog HDL code of a D Latch

1
2
3
4
5
6
7

module D_FF(clock,D,Q);
input clock,D;
output reg Q;
always@(*)
 if(clock)
 Q<=D;
endmodule

Example 11

The following example demonstrates the Verilog HDL code of a D flip-flop. A D flip-flop is a 1-bit

data storage device that saves one-bit data depending on its input D and clock pulse. When a

clock edge is triggered, whatever input is present in D goes to the output Q.

1
2
3
4
5
6

module D_FF(clock,D,Q);
input clock,D;
output reg Q;
always@(posedge clock)
 Q<=D;
endmodule

Example 12

The following example demonstrates the Verilog HDL code of a 4 to 2 priority encoder with a
valid bit. In the example, the casex statement is used. In Verilog, there are three types of
variations in case. The case, casex and casez all do bit-wise comparisons between the
selecting case expression and individual case item statements. In the case statement, the values
x or z in an alternative are checked for an exact match with the same values in the controlling
expression. On the other hand, casex ignores any bit position containing an ‘x’ or ‘z’. The
casez statement only ignores bit positions with a ‘z’.

1
2
3
4
5
6
7
8
9

10

module p_encoder_4to2(D,Y,V);
input [3:0]D; //declaring variable for input
output reg [1:0]Y; //declaring variable for output
output reg V; //declaring the variable for valid bit
always@ *
begin
 casex(D)
 4'b0001:
 begin
 Y=2'b00; V=1;

Page 19 of 133

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

 end
 4'b001x:
 begin
 Y=2'b01; V=1;
 end
 4'b01xx:
 begin
 Y=2'b10; V=1;
 end
 4'b1xxx:
 begin
 Y=2'b11; V=1;
 end
 default:
 begin
 Y=2'bx; V=0;
 end
 endcase
end
endmodule

Page 20 of 133

Simulating Verilog HDL

1. Find the following icon on your PC and double-click on the icon to run the software.

(Search: ModelSim - Intel FPGA Starter Edition Model Technology ModelSim - Intel FPGA

Edition vsim 2020.1 (Quartus Prime 20.1))

2. The following window will pop up.

3. Execute File → New → Project. The Create Project window will appear.

4. In the Create Project window change the Project Location to your directory (e.g.

D:/150205022/Lab-1/Full_Adder) and give a name in the Project Name field. After that

click on the OK button.

[Project name must be same as the top module]

Page 21 of 133

5. The Add items to the Project window will appear. Select the Crete New File button.

6. In the Create Project File window fill up the File Name field which must be identical to

the project name and top module name. Also, select Verilog from the Add file as type

dropdown menu. And ten click OK button.

Page 22 of 133

7. The Add items to the Project window will appear again. Click on the Close button.

8. Now the ModelSim window will look like the following figure.

Page 23 of 133

9. Now to open the editor window execute File → Open…

10. From the appeared file browser select your Verilog file(.v format)

11. In the editor window write the Verilog module of your design. And save using the shortcut

executing Ctrl+S every time.

Page 24 of 133

12. Now click on the Compile All icon for compiling the design.

[alternatively, execute Compile → Compile All]

13. After successful compilation you will get the following message will appear in the

Transcript window.

14. Now to simulate the design click on the Simulate icon.

[alternatively, execute Simulate→ Start Simulation..]

15. The Start Simulation window will appear. From the Design tab, execute work → <click

on your project module name> and click on the OK button.

Page 25 of 133

16. The following message will appear in the transcript if everything is done correctly.

17. The input and output variables defined in the Verilog will appear in the Objects window.

18. Now go to the Wave window and select all the input and output variables of the Objects

window and by right-clicking on your mouse execute Add Wave to place them in the

Wave window.

Page 26 of 133

19. All the input and output variables will be placed on the wave window and the wave

window will look like the following.

20. Now apply clock to each input variable. Right-clicking any input variable and from the

popped-up menu execute Modify → Clock.

Page 27 of 133

21. The Define Clock window will appear. Set parameters as per your requirement keep in

mind all the units are in picoseconds by default.

22. After defining all the input clocks, to evaluate the outputs write run 100 ps on the

Transcript of ModelSim. Then the simulation will be performed for 100 ps.

Alternatively, we can run the wave output using the Run icon by typing the Run length

[Give run length according to your requirement.]

Page 28 of 133

23. The wave window will look like the following figure after simulation.

If you need to change the clock pulse you must reset all the clocks before changing clocks
otherwise the inputs and outputs will change after the previous run time which is not a
convenient way to represent the inputs and outputs. The command “restart” is used in the
transcript for resetting all the clock. Alternatively, restart can be performed by executing
Simulate → Restart

Showing Binary values on the Wave

Sometimes it is hard to verify the functionality of a digital system from the wave. For easy

functional verification, we can read the binary values from the wave of ModelSim by doing the

following steps.

I. Select all the input and output variables on the clock and right-click on the mouse

and execute Radix → Binary.

Page 29 of 133

II. After changing the Radix, change the Format type similarly by selecting all input

and output variables on the wave by right-clicking on the mouse and then

executing Format → Literal.

III. Now on the wave, binary values will be displayed which can be easily analyzed.

Changing Clock Unit

In step 21 it is mentioned that ModelSim’s default timing unit is picosecond. But in some cases,

we may need to define clocks in other units. Let us consider, that we need to define the period

of a, b, and c as 10ms, 5ms, and 2.5ms respectively. Now define the clock a, b, and c as shown in

the below figures.

Page 30 of 133

To view output for all the input combinations the run length should be equal to the maximum

period.

As all the units are in milliseconds, for easy visualization we can change the time units of the wave

grid by executing Wave → Wave Preferences → Grid & Timeline → Time units → ms.

Now the ModelSim wave window will look like the following figure.

Similarly, for femtoseconds, nanoseconds, and microseconds, we can use fs, ns, and ms
respectively

Page 31 of 133

Post Lab Tasks

1. Test the functionality of each example (4-13) using the ModelSim wave.

2. Design three input NOR gate using the switch level abstraction.

3. Design a 4-bit Carry Look Ahead adder using the concept of hierarchical modeling.

4. Design a BCD adder using the behavioural modeling technique.

Page 32 of 133

Lab-2: Introduction to Functional Verification

Using Verilog Testbench.

Objective

The main objectives of this lab are:

• Familiarization with test bench module.

• Learning different techniques for generating test vectors

• Verifying combinational circuits imposing test vectors.

Introduction

The test bench is an automated way of verifying and validating a digital design. A test bench is a

procedural block that executes only once. Particularly the “initial” procedural block is used for

the test bench. Only for repeated clock generation, the “always” procedural block is used. Test

bench generates clock, reset, and the required test vectors for a given design under test (DUT)

and hence by monitoring the output functionality of the design is verified. During synthesizing a

design, a test bench is not required it is required during simulation only.

Block of Design Under Test

Rules of Testbench

I. Define timescale using the command “ `timescale <unit>/<precision> “.

II. Instantiate the top module in the test bench module.

III. Declare the input and output of design as “reg” and “wire” type respectively in the test

bench module.

IV. Specify the test vectors for different delays using the command “#<time_delaye>”.

V. Use “$display()” or “$monitor()” commands to show outputs for the given test vectors

in the transcript.

VI. The “initial” procedural block must be declared at least once.

VII. Terminate testbench using the command “$finish”.

VIII. Monitor the outputs for functional verification using the transcript and wave.

Design Under Test

(DUT)
Monitor Stimulus

Page 33 of 133

Example 01

The following example demonstrates the Verilog HDL code of a half adder.

1
2
3
4
5
6

module HA(A,B,S,C);
input A,B;
output S,C;
assign S=A^B;
assign C=A&B;
endmodule

The following Verilog HDL code demonstrates the Testbench Module of the half adder of

Example 01 for random test inputs.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

`timescale 1ns/1ps
module HA_TB;
reg a,b;
wire s,c;
HA Ha_dut(a,b,s,c);
initial
begin
 #0 a=0; b=0;
 #5 a=0; b=1;
 #5 a=1; b=0;
 #5 a=1; b=1;
 #5 $finish;
end
endmodule

The previous Testbench Module of half adder can only generate test vectors for a certain interval

but not periodic. The following Testbench Module of half adder. The forever loop-like procedural

block “always” is used to generate periodic inputs.

1
2
3
4
5
6
7
8
9

10
11
12
13

`timescale 1ns/1ps
module HA_TB;
reg a,b;
wire s,c;
HA Ha_dut(a,b,s,c);
initial
begin
 a=0; b=0;
end

always
 #10 a=~a; // for time period 20 unit
always

Page 34 of 133

14
15
16
17
18

 #5 b=~b; // for time period 10 unit
initial
 #20 $finish;
end
endmodule

Example 02

The following example demonstrates the Verilog HDL code of a full adder.

1
2
3
4
5
6

module Full_Adder(sum, carry, a, b, c);
input a,b,c;
output sum, carry;
assign sum=a^b^c;
assign carry= (a&b) | (b&c) | (c&a);
endmodule

The following Verilog HDL code demonstrates the Testbench Module of the full adder of Example

02 for random test inputs.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

`timescale 1ns/100ps
module Full_Adder_TB;
reg a,b,c;
wire sum, carry;
Full_Adder FA_DUT(sum,carry,a,b,c);
initial
begin
 $monitor($time, " a=%b, b=%b, c=%b, sum=%b, carry=%b", a ,b, c, sum, carry);
 #0 a=0; b=0; c=1;
 #5 b=1;
 #5 a=0; b=1; c=1;
 #5 $finish;
end
endmodule

Page 35 of 133

Example 03

The following example demonstrates the Verilog HDL code of a 2 to 4 decoder.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16

module decoder_2to4(s,e,y);
input [1:0] s;
input e;
output reg [3:0]y;
integer k;
always@ (s,e)
begin
 for (k=0;k<=3;k=k+1)
 begin
 if ((s==k) && (e==1))
 y[k]=1;
 else
 y[k]=0;
 end
end
endmodule

The following Verilog HDL code demonstrates the Testbench Module of the 2 to 4 decoder of

Example 03.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

`timescale 1ns/1ps
module decoder_2to4_TB;
reg [1:0]s; reg e;
wire [3:0]y;
decoder_2to4 dut(s,e,y);
initial
begin
 $monitor($time, " e=%b, s=%b, y=%b", e ,s, y);
 e=0;
 #5 e=1; s=2'b00;
 #5 s=2'b01;
 #5 s=2'b10;
 #5 s=2'b11;
 #5 s=2'b00;
 #5 s=2'b01;
 #5 s=2'b10;
 #5 s=2'b11;
 #5 $finish;
end
endmodule

Page 36 of 133

The following Verilog HDL code demonstrates another Testbench Module to verify the 2 to 4

decoder of Example 03 which is efficient than the previous one.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

`timescale 1ns/1ps
module decoder_2to4_TB;
reg [1:0]s; reg e;
wire [3:0]y;
integer i,j;
decoder_2to4 dut2(s,e,y);
initial
begin
 e=0;
 $monitor($time, "e=%b, s=%b, y=%b", e ,s, y);
 for (j=1;j<=2;j=j+1)
 begin
 for (i=2'b00;i<=2'b11;i=i+1)
 begin
 #5 e=1; s=i;
 end
 end
 #5 $finish;
end
endmodule

Example 04

A magnitude comparator is a combinational circuit
that compares the magnitude of two n-bit numbers A
and B. The comparison of two numbers is an operation
that determines whether one number is greater than,
less than, or equal to the other number. The outcome
of the comparison is specified by three binary
variables G, E, and S that indicate whether A>B, A=B,
and A<B respectively. In a magnitude comparator at a
time, only one output variable can be logically high.

Block diagram of a magnitude comparator

The following example demonstrates the Verilog HDL code of a 2-bit magnitude comparator. The

module has 2 inputs A and B each are 2-bit numbers

When,

A>B outputs G=1, E=0 ,S=0

A=B outputs G=0, E=1, S=0

A<B outputs G=0, E=0, S=1

Page 37 of 133

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

module mag_comp_2bit(A,B,G,E,S);
input [1:0]A,B; // declaring 2-bit input variables A and B
output reg G,E,S;
always@* // * symbol means the sensitivity list will be detected automatically
begin
 if (A>B)
 begin
 G=1'b1;
 E=1'b0;
 S=1'b0;
 end
 else if (A==B)
 begin
 G=1'b0;
 E=1'b1;
 S=1'b0;
 end
 else
 begin
 G=1'b0;
 E=1'b0;
 S=1'b1;
 end
end
endmodule

The following Verilog HDL code demonstrates another Testbench module to verify the 2-bit

magnitude comparator of Example 04.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

`timescale 1ns/1ps
module mag_comp_2bit_TB;
reg [1:0]A,B;
wire G,E,S;
integer i,j;
mag_comp_2bit dut(A,B,G,E,S);
initial
begin
 $monitor($time, " A=%b, B=%b, G=%b, E=%b, S=%b", A, B, G ,E, S);
 for (j=2'b00;j<=2'b11;j=j+1)
 begin
 A=j;
 for (i=2'b00;i<=2'b11;i=i+1)
 begin
 #5 B=i;
 end
 end

Page 38 of 133

18
19
20

 #0 $finish;
end
endmodule

Example 05

The following example demonstrates the Verilog HDL code of delayed gates

1
2
3
4
5
6
7

`timescale 1ns/1ps
module delay_gate(a,b,c,f,out);
input a,b,c;
output out,f;
and #(5) U1(f,a,b);
or #(4) U2(out,f,c);
endmodule

The following Verilog HDL code demonstrates another Testbench module to verify the logic

arrangement shown in Example 05.

1
2
3
4
5
6
7
8
9

10
11
12
13

`timescale 1ns/1ps
module delay_gate_TB;
reg a,b,c;
wire out,f;
delay_gate dut(a,b,c,f,out);
initial
begin
 a=1'b0; b=1'b0; c=1'b0;
 #10 a=1'b1; b=1'b1; c=1'b1;
 #10 a=1'b1; b=1'b0; c=1'b0;
 #20 $finish;
end
endmodule

Page 39 of 133

Simulating Testbench

24. Find the following icon on your PC and double-click on the icon to run the software.

(ModelSim - Intel FPGA Starter Edition Model Technology ModelSim - Intel FPGA Edition

vsim 2020.1 (Quartus Prime 20.1))

25. The following window will pop up.

26. Execute File → New → Project. The Create Project window will appear.

27. In the Create Project window change the Project Location to your directory (e.g.

D:/150205022/Lab-1/Full_Adder) and give a name in the Project Name field. After that

click on the OK button.

[Project name must be same as the top module]

Page 40 of 133

28. The Add items to the Project window will appear. Select the Crete New File button.

29. In the Create Project File window fill up the File Name field which must be identical to

the project name and top module name. Also, select Verilog from the Add file as type

dropdown menu. And then click the OK button.

Page 41 of 133

30. The Add items to the Project window will appear again. Click on the Close button.

31. Now the ModelSim window will look like the following figure.

Page 42 of 133

32. Now to open the editor window execute File → Open…

33. From the appeared file browser select your Verilog file (.v format)

34. In the editor window write the Verilog module of your design. And save using the shortcut

executing Ctrl+S every time.

Page 43 of 133

35. Now click on the Compile All icon for compiling the design.

[alternatively, execute Compile → Compile All]

36. After successful compilation you will get the following message will appear in the

Transcript window.

37. Now, to write the test bench code create a new Verilog file at first click on the project

window then execute Project→ Add to Project → New File...

38. Now in the Create Project File window, fill up the File Name field which will be our test

bench module name. Also, select Verilog from the Add file as type dropdown menu. And

then click the OK button.

Page 44 of 133

39. Now there will be two files under the project.

40. Open the testbench file following step 10 and write the testbench code in the editor.

41. Now click on the Compile All icon for compiling the design.

[alternatively, execute Compile → Compile All]

42. Now to simulate the design click on the Simulate icon.

[alternatively, execute Simulate→ Start Simulation..]

Page 45 of 133

43. The Start Simulation window will appear. From the Design tab execute work → <click

on your test bench module> and click on the OK button.

44. The following message will appear in the transcript if everything is done correctly.

45. Graphically the functionality of the design can be checked from the wave window of the

ModelSim Simulator. Execute view → wave if it doesn’t appear automatically. Now go to

the Wave window and select all the input and output variables of the Objects window

and by right-clicking on your mouse execute Add Wave to place them in the Wave

window.

Page 46 of 133

46. All the input and output variables will be placed on the wave window and the wave

window will look like the following figure.

47. Now to evaluate the outputs write run 15 ns on the Transcript of ModelSim. Alternatively,

we can run the wave output using the Run icon by typing the Run length.

[Give run length according to your requirement.]

48. The Finish Vsim window will appear. Click No otherwise the ModelsSim will be closed

immediately.

Page 47 of 133

49. Now for the given test vectors the functionality of the design can be verified from the

wave output generated by the ModelSim simulator.

50. Functionality of the design can also be verified from the transcript generated by the

ModelSim simulator. Execute view → Transcript if it doesn’t appear automatically.

Page 48 of 133

Post Lab Tasks

1. Write a testbench program to test a full adder circuit with the signal shown below.

2. Differentiate between -

a. $finish and $stop command.

b. $monitor and $display command.

3. Is it possible to check the functionality of a sequential circuit from the transcript only?

4. Can we use the “always” procedural block in the Testbench module?

5. Is it possible to generate periodic stimuli in the testbench? If possible, generate the signals

of task-1 for two periods.

Page 49 of 133

Lab-3: Modeling Sequential Systems and Finite

State Machine Using Verilog HDL

Objective

The main objectives of this lab are:

• Functional verification of sequential circuits using Verilog Testbench.

• Modeling finite state machine and its functional verification using Verilog Testbench.

Introduction

A digital system can be either in the form of combinational logic or sequential logic. In

combinational logic, the output of a circuit depends only on the presently applied inputs. On the

other hand, the output of a sequential circuit depends on the applied input and the present

states. Most practical digital systems are sequential. To design a digital system, the behavioral

abstraction is used as a reference to create and refine a synthesizable register transfer level (RTL)

abstraction that captures the desired functionality required by the design specification.

Example 01

Flip-flops are the building blocks of sequential circuits. In the following example, the Verilog HDL

code of a positive edge-triggered T flip-flop with reset is demonstrated.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

module T_FF(T,clk,reset,Q);
input T,clk,reset;
output reg Q;
always@(posedge clk)
begin
if(reset==0)
begin
 if (T)
 Q<=~Q;
 else
 Q<=Q;
end
else
 Q<=0;
end
endmodule

Page 50 of 133

Testbench Module of Example 01

The following Verilog HDL code demonstrates the Testbench Module of the T flip-flop of Example

01.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

`timescale 1ns/1ps
module T_FF_TB;
reg T,clk,reset;
wire Q;
T_FF dut(T,clk,reset,Q);
initial
begin
 T=0; clk=0; reset=1;
end
always
 #2 clk=~clk;
initial
begin
 #6 reset=0; T=1;
 #4 reset=1; T=1;
 #4 reset=1; T=0;
 #2 reset=0; T=0;
 #2 $finish;
end
endmodule

Example 02

The following example demonstrates the Verilog HDL code of a positive edge-triggered JK flip-

flop with clear.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

module JK_FF(clk,J,K,Q,clear);
input clk,J,K,clear;
output reg Q;
always@ (posedge clk)
begin
if(clear==0)
begin
 if (J==0 && K==0)
 Q<=Q;
 else if (J==0 && K==1)
 Q<=0;
 else if (J==1 && K==0)
 Q<=1;
 else

Page 51 of 133

15
16
17
18
19
20

 Q<=~Q;
end
else
 Q=0;
end
endmodule

Testbench Module of Example 02

The following Verilog HDL code demonstrates the Testbench Module of the JK flip-flop of

Example 02.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

`timescale 1ns/1ps
module JK_FF_TB;
reg clk,J,K,clear;
wire Q;
JK_FF JK_dut(clk,J,K,Q,clear);
initial
begin
 clk=0; J=0; K=1;clear=0;
end
always
 #2 clk=~clk;
initial
begin
 #2 clear=1; J=1; K=0;
 #4 clear=0; J=0; K=1;
 #4 J=1;
 #4 J=0;
 #4 $finish;
End
endmodule

Page 52 of 133

Example 03

In this example a 4-bit ripple carry counter will be designed using the submodule of a T flip-flop

and each T filp-flop is designed using leaf module of D flip-flop. The block representation of the

ripple carry counter is shown below.

4-bit ripple carry counter

T flip flop using D flip flop

The following example demonstrates the Verilog HDL code of a 4-bit asynchronous ripple-carry

country as shown in the following block diagram.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

module rc_counter(q,clock,reset);
output [3:0] q;
input clock,reset;
t_ff tff0 (q[0], clock, reset);
t_ff tff1 (q[1], q[0], reset);
t_ff tff2 (q[2], q[1], reset);
t_ff tff3 (q[3], q[2], reset);
endmodule

module t_ff (q,clk,r);//T-Flip-Flop
output q;
input clk,r;
wire d;
d_ff dff1(q,d,clk,r);
not n1(d,q);
endmodule

module d_ff (q,d,clk,r);//D-Flip-Flop
output reg q;
input d,clk,r;
always @(posedge r or negedge clk)
begin
 if (r)
 q<=1'b0;

Page 53 of 133

25
26
27
28

 else
 q<=d;
end
endmodule

Testbench Module of Example 03

The following Verilog HDL code demonstrates the Testbench Module of the 4-bit asynchronous

ripple-carry counter of Example 03.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

`timescale 1ns/1ps
module rc_counter_TB;
reg clk, res;
wire [3:0]q;
rc_counter rc_counter_dut(q,clk,res);
initial
begin
 clk=0;
end
always
 #5 clk=~clk;
initial
begin
 $monitor($time, " clk=%b, res=%b, q=%b", clk, res, q);
 res=1;
 #15 res=0;
 #180 res=1;
 #10 res=0;
 #20 $stop;
end
endmodule

Example 04

The following example demonstrates the Verilog HDL code of a simple 8-bit accumulator. The

module is designed in such a way that when reset=0 the output is set to 0 and when reset=1 the

output adds the input.

1
2
3
4
5
6
7

module accu(in, acc, clk, reset);
input [7:0] in;
input clk, reset;
output reg [7:0]acc;
always @(posedge clk)
begin
 if (reset)

Page 54 of 133

8
9

10
11
12

 acc<=0;
 else
 acc<=acc+in;
end
endmodule

Testbench Module of Example 04

The following Verilog HDL code demonstrates the Testbench Module of the accumulator of

Example 04.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

`timescale 1ns/1ps
module accu_TB;
reg [7:0] in;
reg clk,reset;
wire [7:0] out;
accu dut(in, out, clk, reset);
initial
 clk = 1'b0;
always
 #5 clk = ~clk;
initial
begin
 #0 reset<=1; in<=1;
 #5 reset<=0;
 #50 $finish;
end
endmodule

Example 05

In this example, a 4-bit Arithmetic Logic Unit (ALU) shown in the following figure will be designed

using Verilog HDL. The top module of the ALU is alu_4bit and it is designed using three sub-

modules: logical_unit, arithmetic_unit, and control_unit. In the design, the two 4-bit inputs A

and B are fed to the inputs of arithmetic_unit and logical_unit modules to perform two different

arithmetic operations and two different logical operations according to the function table given

below. Thus the arithmetic_unit and logical_unit generates four outputs y1,y2,y3, and y4 which

are fed to the inputs of control_unit module which generates the 8-bit output Y from the

y1,y2,y3 and y4 depending on its 2-bit Opcode input. The output Y is also sensitive to the positive

edge of the clk input.

Page 55 of 133

The function table of the ALU is given below.

Function Table

Opcode Output (Y) Description of function
00 A+B Add A to B

01 A-B Subtract B from A
10 A&B Bitwise AND

11 A⊕B Bitwise XOR

The following Verilog HDL code demonstrates the ALU mentioned in Example 05.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

module alu_4bit(A,B,Y,clk,Opcode);
input [3:0]A,B;
input [1:0]Opcode;
input clk;
output [7:0]Y;
wire [7:0]y1,y2,y3,y4;
arithmetic_unit sm1(A,B,y1,y2);
logical_unit sm2(A,B,y3,y4);
control_unit sm3(y1,y2,y3,y4,clk,Opcode,Y);
endmodule

module arithmetic_unit(x,y,y1,y2);
input [3:0]x,y;
output reg[7:0]y1,y2;

Page 56 of 133

Testbench Module of Example 05

The following Verilog HDL code demonstrates the Testbench Module of the 4-bit ALU of Example

05.

1
2
3
4
5
6
7
8

`timescale 1ns/1ps
module alu_4bit_TB;
reg [3:0]A,B;
reg [1:0]Opcode;
reg clk;
wire [7:0]Y;
alu_4bit dut(A,B,Y,clk,Opcode);
initial

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

always@(x,y)
begin
 y1<=x+y;
 y2<=x-y;
end
endmodule

module logical_unit(x,y,y3,y4);
input [3:0]x,y;
output [7:0]y3,y4;
assign y3=x&y;
assign y4=x^y;
endmodule

module control_unit(y1,y2,y3,y4,clk,Opcode,Y);
input [7:0]y1,y2,y3,y4;
input [1:0]Opcode;
input clk;
output reg[7:0]Y;
always@(posedge clk)
begin
 if(Opcode ==2'b00)
 Y<=y1;
 else if(Opcode ==2'b01)
 Y<=y2;
 else if(Opcode ==2'b10)
 Y<=y3;
 else if(Opcode ==2'b11)
 Y<=y4;
 else
 Y<=0;
end
endmodule

Page 57 of 133

9
10
11
12
13
14
14
16
17
18
19
20
21

begin
 clk = 1'b0; Opcode=2'b00; A=4'b0100; B=4'b1100;
end
always
 #2.5 clk = ~clk;
initial
begin
 #5 Opcode<=2'b01; A=4'b1000; B=4'b0111;
 #5 Opcode<=2'b10; A=4'b1111; B=4'b1011;
 #5 Opcode<=2'b11; A=4'b1001; B=4'b1010;
 #5 $finish;
end
endmodule

Finite State Machine Design

In a sequential circuit, outputs depend not only on the applied input values but also on the

internal state. The internal state also changes with time. As the number of states in a sequential

circuit is finite it is also referred to as a Finite State Machine (FSM). FSMs need memory to hold

the current state and logic devices to determine the next state. Elevators(lift), vending machines,

traffic signal systems, password generators etc. are examples of FSM.

There are two types of finite state machines called the Mealy machine and the Moore Machine.

In Mealy machines, the output is a function of the current state and inputs. In Moore machines,

the output is a function of only the current state. To design FSMs, we need to find the state

transition diagram or the state table.

FSMs are modeled in Verilog with an always block defining the state registers and combinational

logic defining the next state and output logic.

Moore Machine Mealy Machine

Page 58 of 133

Example 06

In this example, the Verilog HDL code of a Mealy machine is demonstrated that generates output

‘1’ when sequence 101 is detected in a bitstream.

State Transition Diagram

The following Verilog HDL code demonstrates the sequence detector mentioned in Example 06.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

module seq_101(i,clk,out);
input i,clk;
output reg out;
localparam S0=2'b00, S1=2'b01, S2=2'b10;
reg [1:0]state;
always@ (posedge clk)
begin
case (state)
S0: begin
 out<=i?0:0;
 state<=i?S1:S0;
 end
S1: begin
 out<=i?0:0;
 state<=i?S1:S2;
 end
S2: begin
 out<=i?1:0;
 state<=i?S0:S0;
 end
default:
 begin
 out<=0;
 state<=S0;
 end
endcase
end
endmodule

Page 59 of 133

Testbench Module of Example 06

The following Verilog HDL code demonstrates the Testbench Module of the sequence detector

of Example 06 where 0101001010-bit stream is generated.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

`timescale 1ns/1ps
module seq_TB;
reg i,clk;
wire out;
seq dut(i,out,clk);
initial
 clk=0;
always
 #2 clk=~clk;
initial
begin
 #0 i=0;
 #5 i=1; #4 i=0; #4 i=1; #4 i=0;
 #4 i=0; #4 i=1; #4 i=0; #4 i=1;
 #4 i=0;
 #4 $finish;
end
endmodule

Page 60 of 133

Post Lab Tasks

1. Design a negative edge triggered D flip flop with reset and verify its functionality using

testbench.

2. In Example 5 how many 1s will be generated at the output if the input bitstream is

01010100? Verify your answer using testbench.

3. Write a Verilog program to implement the digital system represented by the following

state transition diagram of a Mealy machine. Assume that system has input and output

variables in and Y. The system functions when the positive edge of the clock is detected.

4. Design a Mealy machine to detect the 010 sequences hence verifying its functionality

using testbench.

5. The state transition diagram of a two-bit counter is shown below. Assuming that each

state changes when a positive edge clock is detected. Design and verify the system using

Verilog HDL.

Page 61 of 133

Lab-4: Introduction to Unix Shell

Objective

The main objectives of this lab are:

• Logging into the Cadence software installed Linux server.

• To get started with the Linux environment.

• To comprehend the file and directory management using shell command.

• To get familiar with Vim text editor.

Introduction

Electronic Device Automation (EDA) tools are required to run for a long time which consumes a

huge amount of memory (RAM), runs in multiple threads/processes and are multiuser programs.

For that, Unix or Linux is the ideal choice to run (EDA) tools.

In the upcoming lab classes, we will use different cadence tools preinstalled on the Linux server.

For that, we have to login into your student account from the Windows operating system based

computer allocated for the student use.

Steps to Login into Linux Server

The following flowchart summarizes the steps to login into the Linux server.

Start XLaunch

Start Putty Open VLSI_LAB
session

Login to server

Type the commands one by one
and press Enter:

csh
source cshrc_q
nautilus

Page 62 of 133

The detailed instructions are given below

1. Find the Desktop shortcut icon for XLaunch. Double-click on it. Click Next, Next, Next,

Finish (in that order) in the windows that pop up one after another.

After it starts, you will see the Xming icon at the bottom right corner of your Desktop

screen.

2. Find the icon for Putty. Double click on it to open it. ‘Putty Configuration’ window will

pop-up

3. Select VLSI_LAB under the ‘Saved Sessions’ category. Click Load and then click Open.

Page 63 of 133

4. Now you will see a Terminal window which prompts you for login.

5. Log in to your workstation using user ID and password. Your user name and your

password will be your student ID. When you are typing your password, the command

window will not display the characters you type in, so make sure you are typing the right

password. After logging in to your account, Terminal window should look like the

following:

6. Type csh and press the ‘Enter’ key.

7. Then type source cshrc_q and press the ‘Enter’ key. The following message will be

displayed in the Terminal window: Welcome to Cadence tools Suite That means you can

use Cadence tools now.

8. Finally Type nautilus and press the ‘Enter’ key to enter the GUI of your account. The GUI

window will look like the following snapshot.

Page 64 of 133

9. The GUI of your account will look like the following window

Terminal in Unix

1. Right-click on the blank space of your Linux desktop a window will pop up and then select

Open_Terminal .

Page 65 of 133

Lab Task
The following flow chart summarizes the tasks to be performed in Lab-04.

Log in to Server in the GUI mode

Open the Terminal

Find the location of the present directory

Create a directory as Lab_4 and inside it create
another two directories as direct_1 and direct_2

 Go to direct_1

 Create Two files
test-1.txt and test-2.txt

test-1.txt
Name:
Student ID:
Semester:

test-2.txt
echo “Hello VLSI Enthusiasts”

Read the content inside the test-1.txt and source
the test-2.txt files

Copy the contents of test-1.txt into a new file test-

3.txt

Delete the file test-1.txt Go to direct_2

Copy the test-3.txt file from the direct_1

Check the content of the file

Copy the directory direct_1 into the direct_2

Go back to the main directory where direct_1 and direct_2 directories are created

 Delete the directory direct_1

Page 66 of 133

Directory Management in Unix

Command Description Syntax

pwd print name of current/working directory. pwd

ls lists directory contents. ls

ls -ltr lists directory contents by arranging them
according to time by using the -ltr switch.

ls -ltr

tree Show the file hierarchy inside a directory tree

mkdir make directories. mkdir
<directory_name>

cd Change directory. cd <directory_path>

cd ~/
cd ~

Goes to the home directory cd ~/
cd ~

cd ..
cd ../

Goes to the previous directory. cd ..
cd ../

cd ../../ Goes two directories back. cd ../../

Vim Editor in Unix

Command Description Syntax

touch Creates a file.(Extension can be .txt, .v, .tcl, etc) touch test.txt

press insert/ins Enables the INSERT mode

The
commands of
the vim editor
can be
executed after
pressing the
Esc key.

:w Writes/saves the text file.

:q Quits from vim editor.

:wq Writes the text and then quits the vim editor.

:wq! Forcefully writes and quits the vim editor through bang(!)

:set nu Shows the line numbers.

:<line no> The cursor moves to the specified line no.

:set nu! Removes the line numbers.

:/xyz Used to search all the “xyz” from the beginning
(Use n to move from one to another)

:?xyz Used to search all the “xyz” from the bottom

:%s=x=y=g Replaces all x with y

u Undo

Press Ctrl+R Redo

Reading and sourcing a file

Command Description Syntax

cat Checks the content inside a file. cat <file_name>

source
./

Reads and executes commands from the
file.

source <file_name>
./<file_name>

Page 67 of 133

Files and directory manipulation in Unix

Command Description Syntax
cp Copies files and directories. cp <source_file> <destination_file>
rm Remove files. rm <directory_name>

rmdir Removes empty directories. rmdir <directory_name>
rm -rf Removes directories containing files by

force recursive using force recursive
switch.

rm -rf <directory_name>

mv Moves one or more files and directories to
a given location (if the location is not
defined. it renames files on the current
location).

mv<source_file> <destination_dir>

Other Useful Commands

Command/Key Description
history Prints the previous commands executed in the bash terminal.

(Syntax: history)

man Shows the documentation of any command
(Syntax: man pwd)

Shortcut Keys

Command/Key Description
Up/Down Arrow keys Scrolls through command history.

Tab key Used to complete the command you are typing.
Ctrl + Shift + C Copies the highlighted command to the clipboard.
Shift + Insert Pastes the contents of the clipboard.

Ctrl + L Clears the terminal

Bash Script

Bash scripts are typically used for handling directories and files, not for coding. But it can

be useful for scripting with various arithmetic use cases and scenarios. Bash only supports integer

arithmetic, so if we need to perform calculations with floating-point numbers, have to use

separate utility in bash. There are several ways and syntax of performing arithmetic operations,

using conditions and loops in bash. The below code is just a simple demonstration of arithmetic

operations, if..else.. statement, for loop and array declaration in bash. A bash script can be

Page 68 of 133

written using the vim editor and it should be saved with the extension .sh . The commands inside

the script can be executed by sourcing the script.

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16

17
18

19
20
21
22

a=10
read -p "enter b:" b
sum=$(($a+$b))
sub=$(($a-$b))
mult=$(($a*$b))
div=$(($a/$b))
echo "sum=$sum
$a-$b=$sub
$a*$b=$mult
$a/$b= $div"

if [$(($a%2)) == "0"]
then
echo "$a is even"
else
echo "$a is odd"
fi

c=($sum $sub $mult $div)
elements=${#c[@]}

for((i=0;i < $elements;i++))
do
echo "${c[i]}"
done

#Stores user’s input in b variable by prompting in display using -p

#Using if..else.. statement to find whether a is even or odd

#storing different variables in array c
#Counts the no of elements present in the array c

#Using for loop to display all the elements present in array c

Post Lab Tasks

1. How fractional values can be handled in bash?

2. Write a bash script to perform the following arithmetic operation.

y = sin(5) + e3 + √3 + 23

3. Write a bash script that will show your root and home location whenever it is sourced.

4. Write a bash script that will create the following hierarchy in your home.

Page 69 of 133

Lab-5: Synthesis using Genus Synthesis Solution

Objective

The main objectives of this lab are:

● Familiarization with synthesis flow.

● Setting up synthesis constraints.

● Generating optimized gate-level netlist and Standard Design Constraints.

Introduction

Synthesis is a process of transforming RTL (a description of a circuit expressed in a language such

as Verilog or VHDL written in behavioral modeling or data flow modeling) to technology-

dependent or independent gate-level netlist including nets, sequential and combinational cells,

and their connectivity. The main goal of synthesis are obtaining a gate-level netlist, logic

optimization, inserting a clock-gating cell for power reduction, inserting DFT (Design for

Testability) cell, and maintaining the logical equivalence between RTL and gate-level netlist. The

best output of place and route depend on the synthesis.

Fig: Steps of Synthesis

Synthesis tools perform the following three steps to meet all the goals.

▪ Translation: Converts RTL into basic Boolean equation form which is technology-

independent representation.

▪ Optimization: Performs two types of optimizations.

o Logic optimization
▪ Detecting identical cell

Page 70 of 133

▪ Optimize multiplexer

▪ Remove unused cell and net

▪ Reduced word size of the cell

o Design optimization
▪ Reduced WNS (Worst Negative Slack) and TNS (Total Negative Slack)

▪ Power and area optimization

▪ Attempting to meet DRV (Design Rule Violation: Max Fanout, Max

Transition, Max Capacitance)

▪ Mapping: Technology-independent Boolean logic equations are mapped to technology-

dependent library logic gates based on design constraints, and available gates in the

technology library.

Input and Output files of Physical Design

▪ Input Files

 Technology-Related Files

I. Technology file containing names, physical and electrical characteristics of metal

layers, and design rules (.lef)

II. Timing and functionality information of the standard cell (.lib)

 Design Related Files

I. Post Synthesized or Gate Level Netlist (.v)

II. Standard Design Constraints containing all timing and design limitations (.sdc)

▪ Output Files

I. Post-synthesized and optimized gate-level netlist (.v)

II. Standard Design Constraints (.sdc)

Page 71 of 133

Lab Task

In this lab, we will perform synthesis on the RTL of a 4-bit ALU designed and verified in Lab-3

(Example 5).

1. Log in to the server in the GUI mode and source the Cadence license file.
[Xlaunch (enable SSH)→putty (load server IP) → login → csh→ source ~/cshrc_q→ nautilus]

2. In the GUI mode of your account open a terminal by executing right click on mouse →

open terminal.

3. Create a directory at your home lab_5

First check you are at the home using the command pwd

[150205105@aust ~]$ pwd

Then create the directory using the mkdir command.

[150205105@aust ~]$ mkdir lab_5/

4. Check whether the directory is created or not using the following command

[150205105@aust ~]$ ls -ltr

5. Got the directory lab_5 executing the command cd lab_5/

[150205105@aust ~]$ cd lab_5/

6. Copy the necessary files from the root into the lab_5 directory by executing the

following command.

[150205105@aust lab_5 lab_5]$ source /physicalDesignLab.sh

7. Go to the copied directory synthesis_lab.

[150205105@aust lab_5]$ cd synthesis_lab

Page 72 of 133

8. Make sure the following directories and the files are present in the synthesis_lab

directory using the command tree.

[150205105@aust synthesis_lab]$ tree

9. Open the synthesis_cmd.tcl file using the Vim editor.

[150205105@aust synthesis_lab]$ vi synthesis_cmd.tcl

10. Make sure the following commands are present inside the synthesis_cmd.tcl file.

 Commands Description

1 set_db init_lib_search_path EDI_files/libs/ Sets the value of a specific attribute. Here we are

setting directory name where all the timing libraries

are located.

2 set_db library slow.lib Sets which timing library will be used while mapping

3 set_db lef_library EDI_files/lef/gsclib045.lef Sets lef file of a target technology

4 set_db hdl_search_path input_files Sets the directory name where RTL is located

5 read_hdl alu_4bit.v Loads the design with pre-synthesized RTL

6 elaborate Creates a design from Verilog module. Undefined

modules are labeled as unresolved and treated as

blackbox

7 set_top_module alu_4bit Sets top module name

8 current_design alu_4bit Changes the current directory in the design hierarchy

to the specified design

Page 73 of 133

9 write_hdl > alu_4bit_elaborated.v Creates a structural netlist using generic/mapped logic

10 create_clock -name clk -period 10 [get_ports clk] Creates a clock named “clk” having 10ns period in a

specific port “clk”

11 set_clock_uncertainty -setup 0.5 [get_clocks clk] Sets uncertainty value for the clocks while calculating

setup

12 set_clock_uncertainty -hold 0.5 [get_clocks clk] Sets uncertainty value for the clocks while calculating

hold

13 set_max_transition 2 [get_ports clk] Sets maximum allowable transition time for changing

logic state to 2ns for data path

14 set_clock_transition -min -fall 0.5 [get_clocks clk] Sets minimum allowable clock transition time to 0.5ns

for switching logic state from high to low for clock

path

15 set_clock_transition -min -rise 0.5 [get_clocks clk] Sets minimum allowable clock transition time to 0.5ns

for switching logic state from low to high for clock

path

16 set_clock_transition -max -fall 0.5 [get_clocks clk] Sets maximum allowable clock transition time to 0.5ns

for switching logic state from high to low for clock

path

17 set_clock_transition -max -rise 0.5 [get_clocks clk] Sets maximum allowable clock transition time to 0.5ns

for switching logic state from low to high for clock

path

18 set_clock_groups -name original -group [list

[get_clocks clk]]

Defines groups of specific clocks

19 set DRIVING_CELL BUFX8 Defines driving cell name which will drive the input

ports of the design

20 set DRIVE_PIN {Y} Defines driver pin of the driving cell

21 set_driving_cell -lib_cell $DRIVING_CELL -pin

$DRIVE_PIN [all_inputs]

Sets driving cell properties for all the input ports

22 set_max_fanout 10 [current_design] Sets maximum allowable fanout number to 10

23 set_load 0.5 [all_outputs] Sets load capacitance of the output ports of the design

24 set_operating_conditions slow Sets operating condition for delay calculation

25 set_input_delay -max 0.5 [all_inputs] Synthesis tool assumes the data is launched by a

positive edge triggered flop from the external logic

Page 74 of 133

(and the maximum input delay for the setup analysis is

0.5ns)

26 set_output_delay -max 0.5 [all_outputs] Synthesis tool assumes the data is captured by a

positive edge triggered flop in the external logic (and

the maximum output delay for the setup analysis is

0.5ns)

27 remove_assign -buffer_or_inverter BUFX16 -

design [current_design]

Removes assign statement using BUFX16 cell

28 syn_generic Performs generic synthesis

29 write_hdl > alu_4bit_generic.v Creates a structural netlist using generic logic after

generic synthesis

30 synthesize -to_mapped Performs mapping using target timing library

31 write_hdl > alu_4bit_post_synthesis.v Creates a structural netlist using mapped logic after

mapping

32 remove_assigns_without_opt -buffer_or_inverter

BUFX12 -verbose

Removes assign statement using BUFX12 cell

33 set_remove_assign_options -buffer_or_inverter

BUFX12 -verbose

Sets buffer or inverter cell to remove assign

statements

34 write -mapped > alu_4bit_mapped.v Writes mapped netlist for post-synthesis flow

35 write_sdc > alu_4bit.sdc Writes constraints file for post-synthesis flow

11. After checking the synthesis_cmd.tcl close the Vim editor by executing Esc → :q

12. Now make sure you are in the synthesis_lab directory. And launch the Genus tool using

the command genus.

[150205105@aust synthesis_lab]$ genus

13. If the Genus tool is successfully launched, the following text will be shown in the terminal.

Page 75 of 133

14. Now source the synthesis_cmd.tcl file to perform the synthesis of the RTL present in the

input_files directory.

genus@root> source synthesis_cmd.tcl

15. After successfully execution of synthesis_cmd.tcl file, the Genus tool will show that the

SDC file export is finished.

16. Now to show the synthesized output execute the command gui_show.

genus@design:alu_4bit> gui_show

17. The GUI window of the genus synthesis output will be opened. If you click and zoom into

each block of the circuit, you will be able to view the gate interconnections inside the

block.

Page 76 of 133

18. Close the GUI window and exit the Genus tool using the exit command

.

genus@design:alu_4bit> exit

19. Now you will be in the synthesis_lab directory. Check the files inside the directory using

the ls -ltr command and make sure alu_4bit.sdc and alu_4bit _mapped.v files are present

in the directory which will be used for place and route in the upcoming labs.

Post Lab Task

1. Is the testbench module synthesizable?

2. Why the operating condition of synthesis is slow?

3. What is Standard Design Constraints (SDC)?

4. What do LEF and LIB files contain?

5. List the functions of buffer cells in synthesis.

6. Check the function of commands report_power, report_gates, report_timing in Genus.

Page 77 of 133

Lab-6: Physical Design Using Encounter Digital

Implementation System (Part 1)
Objective

The main objectives of this lab are:

● Familiarization with Physical Design flow.

● Familiarization with MMMC(Multi-Mode Multi-Corner).

● Familiarization with chip Floorplan.

Introduction

Back-end Design or Physical Design involves the placement of standard cell, macro, and making

physical connections between pins using metal layers(routing) to meet the design power,

performance, and area (PPA) goals. Physical Design flow uses the technical libraries that are

provided by the fabrication houses. These technology files provide information regarding the

type of Silicon wafer used, the standard cells used, and the layout rules. Physical design is

followed by verification after all verifications post-processing is applied where the data is

translated into an industry-standard format called GDSII.

ASIC design flow showing the physical design tasks

Page 78 of 133

Physical Design is the process of transforming a circuit description into a physical layout that

describes the position of cells and routes for the interconnections between them. In this stage,

standard cells are placed on a defined floorplan, and route the wire to connect the standard cells.

That is why we call this automatic Place and Route (PnR). Goals for each stage of PnR are given

below.

▪ Floorplan

I. Define the width and height of the core and die. (core defines the area where core

Logic cells are placed).

II. Define locations of preplaced cells (blocks or macros, placed based on

connectivity)

III. Surround pre-placed cells with Decoupling capacitors.

▪ Power Plan

I. Power grid network is created to distribute power to each part of the design equally.

II. To connect the power network to every instance by considering IR drops and EM

(Electromigration)

III. Reduce dynamic and static power dissipation.

▪ Placement

I. Minimizes congestion and makes the design routable

II. Timing, power, and area optimization

III. Reduces cell density, pin density, and congestion hot-spots

IV. Minimal DRV violations

▪ Clock Tree Synthesis (CTS)

I. Meeting the constraints written in the SDC file

II. Meeting clock tree targets (Min skew and insertion delay (latency))

III. Controls buffer/inverter level used in the clock network

▪ Routing

I. Minimizes total interconnect/wire length

II. Minimizes critical path delay

III. Completes the connection without increasing total area and minimizes the

number of layer changes

IV. Reduces cross-talk noise

V. Meeting Setup and hold timing margin

Page 79 of 133

Input and Output files of Physical Design

▪ Input Files

 Technology-Related Files

i) Library Exchange Format file (.lef): Contains technology information and an

abstract view of standard cells

ii) Liberty Timing file (.lib): ASCII representation of timing, power parameter, and

functionality information associated with cells of a particular technology node

 Design Related Files

i) Post Synthesized or Gate Level Netlist (.v)

ii) Standard Design Constraints containing all timing and design limitations (.sdc)

▪ Output Files

i) Post APR Netlist (APR refers to Automatic Place and Route)

ii) DEF (Design Exchange Format)

In this lab, our main task is to understand and initialize the MMMC (multi-mode multi-corner)

and design an efficient floorplan for our synthesized RTL of lab-6. We will perform the rest of the

steps and physical verification in the next lab.

Page 80 of 133

Lab Task

Launching Encounter Tool

1. Log in to the server in the GUI mode and source the Cadence license file.

[Xlaunch (enable SSH)→putty (load server IP) → login → csh→ source ~/cshrc_q→ nautilus]

2. In the GUI mode of your account open a terminal by executing right-click on mouse →

open terminal.

3. First check you are at the home using the command pwd

[150205105@aust ~]$ pwd

Then create the directory using the mkdir command.

[150205105@aust ~]$ mkdir lab_6/

4. Check whether the directory is created or not using the following command

[150205105@aust ~]$ ls -ltr

5. Go to the directory lab_6 by executing the command cd lab_6/

[150205105@aust ~]$ cd lab_6/

6. Copy the directory pnr_lab from the root into the lab_6 directory

[150205105@aust lab_6]$ cp /pnr_lab . -rf

7. Go to the copied directory pnr_lab.

[150205105@aust lab_6]$ cd pnr_lab

8. Copy the synthesized netlist alu_4bit_mapped.v and post-synthesis sdc file alu_4bit.sdc

that you created in lab 5 using the following commands.

[150205105@aust pnr_lab]$ cp ~/lab_5/synthesis_lab/alu_4bit_mapped.v input_files /

[150205105@aust pnr_lab]$ cp ~/lab_5/synthesis_lab/ alu_4bit.sdc input_files /

Page 81 of 133

9. Make sure the following directories and the files are present in the pnr_lab directory

using the command tree.

[150205105@aust pnr_lab]$ tree

10. Now make sure you are in the pnr_lab directory. And launch the Encounter tool using the

command encounter.

[150205105@aust pnr_lab]$ encounter

11. If the encounter tool is successfully launched, the following text will be shown in the

terminal and the black GUI window of the encounter will appear on your screen.

Page 82 of 133

The following Encounter GUI window will appear.

Design Import & Timing mode setup

12. Now from the Encounter GUI window, launch the Design Import window by executing

File → Import Design

Page 83 of 133

13. In the Design import window, select the Verilog option under the Netlist section and then

click on the three dots (…) button for importing the synthesized netlist file to the

database.

14. Now the Netlist File window will appear, click on the double arrow button (>>).

Page 84 of 133

15. In the newly appeared Netlist Files window, select the synthesized netlist file

alu_4bit_mapped.v from the input_files directory. Then click on the Close button.

16. If the netlist importing is successful, you will be in the Design Import window again. Now

to define the Top Cell name select the By User option and provide the cell name alu_4bit

in the blank field as shown in the following figure.

Page 85 of 133

17. For adding lef files to the database, select the LEF Files option under the Technology/Physical

Libraries section of the Design Import window. Click on the three dots (…) button beside

the LEF Files option. Then on the appeared LEF Files window click on the arrow (>>) button.

18. In the LEF Files window find and select the lef file gsclib045.lef from the EDI_file/lef

directory and then click on the Close button.

Page 86 of 133

19. Now, on the Power section of the Design Import window, write Power Nets name as VDD

and Ground Nets name as VSS as shown in the below figure. After that click on the Create

Analysis Configuration option for creating the MMMC file.

20. The following blank MMMC Browser window will appear. We will set MMMC objects and

will create appropriate analysis views for our physical design.

Page 87 of 133

Library Sets
We will create two Library Sets using slow and fast timing library files as shown in Table 1.

Table-1

Name Timing library file Directory

max_timing EDI_files/libs/slow.lib

min_timing EDI_files/libs/fast.lib

21. To create a library sets, double click on the Library Sets option of the MMMC Browser to

launch the Add Library Set window.

22. In the Add Library Set window, write max_timing in the name field and click on the Add

button.

23. The Timing Library Files window will appear. Click on the double arrow (>>) button and

select the slow.lib from the EDI_files/libs directory. Then click on the Close button.

Page 88 of 133

24. Now in the Add Library Set window select the OK button. A library set will be created

named max_timing which contains EDI_files/libs/slow.lib

25. Follow steps 21-24 to create the min_timing library set by selecting the fast.lib.

26. After successfully creating two libraries the MMMC browser will look like the below

figure.

Page 89 of 133

RC Corners
Now, we will create an RC Corner using the Cap Table file as shown in Table 2.

Table-2

Name Cap Table Temperature

rc_typical EDI_files/others/capTable 25

27. To create an RC corner, double click on the RC Corners option of the MMMC Browser to

launch the Add RC Corner window.

28. In the Add RC Corner window, write rc_typical in the Name field and 25 in the

Temperature field and select the Cap Table from the location EDI_files/others/capTable.

After that click on the OK button. If the capTable file is not found in the mentioned

location select the File of type as All Files(*) from the Cap Table window.

Page 90 of 133

29. After successfully creating the RC Corner the MMMC browser will look like the below

figure.

Delay Corners
Now, we will create two different Delay Corners using the max_timing and min_timing library

sets and the rc_typical RC Corner as shown in Table-3.

Table-3

Name Type RC Corner Library Set

max_delay Single Bc/Wc rc_typical max_timing

min_delay Single Bc/Wc rc_typical min_timing

30. To create a delay corner, double click on the Delay Corners option of the MMMC Browser

to launch the Add Delay Corner window.

Page 91 of 133

31. In the Add Delay Corner window, write max_delay in the name field, select the type

Single Bc/Wc, choose rc_typical from the RC Corner option, and max_timing from the

Library Set option. Then, click on the OK button.

32. Follow steps 27-28 and create the min_delay delay corner by selecting the min_timing

from Library Set and rc_typical from RC Corner.

33. After successfully creating all two delay corners, the MMMC Browser will look like the

below figure.

Page 92 of 133

Constraint Mode

In this part, a constraint mode will be created from the post synthesis constraint file(SDC file)

using the Constraint Mode option as shown in Table-4.

Table-4

Name SDC constraint files

fuctional_sdc Input_files/alu_4bit.sdc

34. Double click on the Constraint Modes option of the MMMC Browser to open Add

Constraint Mode window.

35. In the Add Constraint Mode window, write fuctional_sdc on the name field and click on

the Add button.

Page 93 of 133

36. Now the SDC Constraints Files window will appear. Click on the double arrow button (>>)

37. Select the alu_4bit.sdc from the input_files directory. After that click on the Close

button.

38. Then click OK on Add Constraint Mode window.

Page 94 of 133

39. After successfully creating the constraint mode, a constraint mode named functional_sdc

is created in the MMMC Browser.

Analysis Views

We will create two different Analysis Views using the previously created max_delay and

min_delay delay corners and constraint mode fuctional_sdc as shown in Table-5.

Table-5

Name Constraint Mode Delay Corner

func_slow fuctional_sdc max_delay

func_fast fuctional_sdc min_delay

40. To create an analysis view double, click on the Analysis Views option of the MMMC

Browser to launch the Add Analysis View window.

Page 95 of 133

41. In the Add Analysis View window write func_slow in the name field, select

functional_sdc from the Constraint Mode option, max_delay from the Delay Corner

option, and after that press Ok.

42. Follow steps 35-36 and create the func_fast analysis view by selecting the functional_sdc

from the Constraint Mode option and max_delay from the Delay Corner option.

Setup and Hold Analysis View

We will specify setup and hold analysis views using the func_slow and func_fast analysis

views created in the previous steps.

43. To specify the setup analysis view, double click on the Setup Analysis View option on the

MMMC Browser to launch the Add Setup Analysis.

44. In the Add Setup Analysis View window select the func_slow from the Analysis View

and press Ok.

Page 96 of 133

45. Following steps 38-39 and specify the Hold Analysis View option by selecting the

func_fast Analysis View.

46. After adding all analysis views, make sure your MMMC Browser looks like the below

figure, and then click on the Save&Close button.

47. The Save MMMC Browser View Definition File window will appear. To save all the steps

of the MMMC browser provide a file name and click on the Save button.[Here, we used

the name Default.view]

Page 97 of 133

48. Now, make sure your final Design Import window looks like the following figure and then

click on the OK button.

49. An Encounter window will appear on your screen. The window has multiple rows like the

following figure which ensure that the database has been created perfectly and ready for

floorplanning.

Page 98 of 133

50. For floorplanning, execute Floorplan → Specify Floorplan.

51. Now in the Specify Floorplan window, set Core Utilization 0.4 and select the option Core

to IO Boundary from the Core Margin By section and put 10 to all the four blank spaces

(Core to Left, Core to Top, Core to Right, Core to Bottom). No need to change the rest of

the value.

Page 99 of 133

52. After successfully specifying all the values, the following floorplan will appear on the

encounter window.

53. Now save the design as an encounter database file using the following command in the

encounter terminal.

encounter 1> saveDesign floorplan.enc

Post Lab Task

1. What are the functions of the MMMC browser?

2. What does Cap Table contain?
3. What are the core area and die area?

4. What is the concept of rows in the floor plan?

5. What is constraint mode and how does it control the whole ASIC design?
6. What are the PVT corner and RC corner?
7. How is utilization calculated?
8. Why do we check the setup in the slow corner and hold in the fast corner?
9. Check all the options of Specify Floorplan window.

Page 100 of 133

Lab-7A: Physical Design Using Encounter Digital

Implementation System (Part 2)
Objective

The main objectives of this lab are:

● Familiarization with power mesh creation.

● Familiarization with standard cell placement techniques.

Lab Task

In the last lab, we prepared the design import settings and created a floorplan for our design. In

this lab, we will perform the rest of the stages of PnR for completing our physical design

1. Log in to the server in GUI mode and source the Cadence license file.
[Xlaunch (enable SSH)→putty (load server IP) → login → csh→ source ~/cshrc_q→ nautilus]

2. In the GUI mode of your account open a terminal by executing right-click on mouse →

open terminal.

3. First check you are at the home using the command pwd

[150205105@aust ~]$ pwd

4. Go to the directory lab_6 executing the command cd lab_6/

[150205105@aust ~]$ cd lab_6/

5. Go to the directory pnr_lab where you have done lab_6 experiment and saved your

design up to the floorplan

[150205105@aust lab_6]$ cd pnr_lab

6. Make sure that the floorplan.enc encounter database are present in the pnr_lab

directory using the command ls -ltr

[150205105@aust pnr_lab]$ ls -ltr

7. Now make sure you are in the pnr_lab directory. And launch the Encounter tool using

the command encounter.

[150205105@aust pnr_lab]$ encounter

Page 101 of 133

8. If the encounter tool is successfully launched, the following text will be shown in the

terminal.

9. Now from the encounter terminal, open floorplan.enc database using the following

command.

encounter 1> source floorplan.enc

 The following floorplan window will appear on your encounter window.

Page 102 of 133

Power Mesh

After restoring floorplan.enc database to the encounter tool, now the next step is power mesh

creation where we will add Ring, Stripes, and SRoute to the design.

10. Now to add ring to the design, select Add Ring option by executing Power → Power

Planning → Add Ring.

11. In the appeared Add Ring window, select the Basic tab and click on the three dots (…)

button beside the Net(s) field.

Page 103 of 133

12. From the appeared Net Selection window, select both VDD and VSS and then click on Add

button. After that click on the OK button.

13. After that in the Basic tab of Add Rings window, check that the Around core boundary

(under the Core ring(s) contouring option) is selected. Then under the Ring Configuration

section, put all the values on the blank field as same as the below figure. Make sure that

the Layer on the Top and Bottom must be Metal3 H and the Layer on the Left and Right

must be Metal4 V.

Page 104 of 133

14. Now click on the OK button of the Add Rings window. You will see the following encounter

window where the ring encloses the core area.

15. To add stripes to the design, select Add Stripes option by executing Power → Power

Planning → Add Stripe.

Page 105 of 133

16. In the appeared Add Stripes window, select the Basic tab and click on the three dots (…)

button for selecting power nets that will be used as stripes in the design.

17. From the appeared Net Selection window, select both VDD and VSS and then click on Add

button. After that click on the OK button.

Page 106 of 133

18. After that in the Basic tab of Add Stripes window, select the Metal2 layer and Vertical

direction options. Provide Metal2 stirpes with a Width of 2um and Spacing between

stripes will be 1um. Now under the Set Pattern subsection select the Number of sets

option and put the value 1 on the blank field. Also, in the blank field of X from left option

under the First/Last Stripe subsection put the value 10.

19. Now click on the OK button of the Add Stripes window. You will see the stripes as well as

the ring on the design like the following figure.

Page 107 of 133

Power Planning: SRoute

20. Now to deliver the power supply to the core circuit we need to perform SRoute (special

route). Select the Special Route option by executing Route → Special Route.

21. In the appeared SRoute windows, select the Basic tab and click on the three dots (…)

button for selecting the power nets name that you created on Import Design browser.

22. From the appeared Net Selection window, select both VDD and VSS and then click on Add

button. After that press the OK button.

Page 108 of 133

23. Now under the Basic tab of the SRoute window, choose Metal2 in Top Layer and Metal1

in Bottom Layer. Make sure that Allow Jogging and Allow Layer Change options remain

unchecked.

24. Now under the Via Generation tab of the SRoute window, choose Top Stack Via: Metal2

and Bottom Stack Via: Metal1 options. Make sure that your Via Generation tab will look

like the below figure.

Page 109 of 133

25. After Completing all the tasks on SRoute window, click on the OK button. The following

figure will appear.

26. This ends our power planning stage. Now save the post your post SRoute design using the

following command.

encounter 2> saveDesign power_plan.enc

Page 110 of 133

Pin Placement

27. After power mesh creation, all the pins of the design need to be placed around the die

boundary. For that, select Pin Editor by executing Edit → Pin Editor.

28. The steps for assigning pins to the left side are given below,

a) At first select A[] and B[] pins the from Pin Group.

b) Next select Spread and Spread type: Along Entire Edge from the Location section.

c) Then select Side/Edge: Left from Pin Attribute section.

d) Also select Layer: M3 from Pin Attribute. [select M4 for top and bottom pins]

e) After that, check the Assign Fixed Status option.

f) Finally press the Apply button.

Page 111 of 133

29. Now following step 28 add the rest of the pins according to Table-a.

Table-a

Pin Name Side/Edge Spread Type Layer

A[]

B[]

Left Along entire edge M3

clk

Top From Center

[for single pin]

M4

Y[] Right Along entire edge M3

Opcode Bottom Between Points

Starting X→20

Ending X →25

M4

30. After adding all the pins click on the OK button of the Pin Editor window. Now the design

will look like the below figure on your encounter window.

31. Now save the design using the following command. This is the end of the pre-placement

stage.

encounter 3> saveDesign pin_placement.enc

Page 112 of 133

Placement
32. To place all the existing instances (standard cells and macros) in the design, use the

following command

encounter 4> placeDesign -noPrePlaceOpt

After placement, click on the black screen of the encounter window and press the F key

on your keyboard. It will clearly show the design with placed instances and the global

routing between.

33. Now save the design to a different database name where all the instances are placed and

connected with each other by global routing by the following command.

encounter 5> saveDesign placement.enc

Page 113 of 133

Post Lab Task
1. Which metal should we use for power and ground rings, stripes, and sroute. why?

2. Check the difference between global routing and detail routing.

3. Check the manual of saveDesign, placeDesign using the man command.

4. What is No-Load violation?

5. Why can't we do hold optimization before building a clock tree?

Page 114 of 133

Lab-7B: Static Timing Analysis Using Encounter

Digital Implementation System
Objective

The main objectives of this lab are:

● Familiarization with Static Timing Analysis.

● Familiarization with clock tree synthesis, and detail routing.

● Familiarization with STA Optimization Techniques. (Pre-CTS and Post-Route)

Introduction

Static Timing Analysis (STA) is a method of validating the timing performance of an ASIC design
by checking all possible paths for timing violations. STA breaks the design down into timing paths,
calculates the signal propagation delay along each path, and checks for violations of timing
constraints inside the design and at the input/output interface.

When performing timing analysis, STA first breaks down the design into timing paths. Each timing
path consists of the following elements:

Page 115 of 133

▪ Start point: The start of a timing path where data is launched by a clock edge or where
the data must be available at a specific time. Every start point must be either an input
port or a register clock pin.

▪ Combinational logic network: Elements that have no memory or internal state.
Combinational logic can contain AND, OR, XOR, and inverter elements, but cannot contain
flip-flops, latches, registers, or RAM.

▪ Endpoint: The end of a timing path where data is captured by a clock edge or where the
data must be available at a specific time. Every endpoint must be either a register data
input pin or an output port.

While performing STA, there are several types of violations that needs to be analyzed and must

solved while debugging the violation paths. We are checking timing violations like setup and hold

violations, and DRV (Design Rule Violations) like maximum transition, capacitance and fanout

violations.

Setup: A setup constraint specifies how much time is necessary for data to be available at the

input of a sequential device before the clock edge that captures the data in the device.

Hold: A hold constraint specifies how much time is necessary for data to be stable at the output

of a sequential device after the clock edge that captures the data in the device.

For this example, assume that the flip-flops are defined in the logic library to have a minimum
setup time of 1.0 time units and a minimum hold time of 0.0 time units. The clock period is
defined in the tool to be 10 time units.

Page 116 of 133

By default, the tool assumes that signals are propagated through each data path in one clock
cycle. Therefore, when the tool performs a setup check, it verifies that the data launched from
FF1 reaches FF2 within one clock cycle, and arrives at least 1.0 time unit before the data gets
captured by the next clock edge at FF2. If the data path delay is too long, it is reported as a timing
violation. For this setup check, the tool considers the longest possible delay along the data path
and the shortest possible delay along the clock path between FF1 and FF2.

When the tool performs a hold check, it verifies that the data launched from FF1 reaches FF2
no sooner than the capture clock edge for the previous clock cycle. This check ensures that the
data already existing at the input of FF2 remains stable long enough after the clock edge that
captures data for the previous cycle. For this hold check, the tool considers the shortest possible
delay along the data path and the longest possible delay along the clock path between FF1 and
FF2. A hold violation can occur if the clock path has a long delay.

Max Transition: Transition delay or slew is defined as the time taken by signal to rise from logic

low state to logic high state or fall from logic high state to logic low state. This check ensures that

logic state is changing within a specific time, not taking longer time than that specific time.

Max Capacitance: The capacitance on a node is a combination of the fan-out of the output pin

and capacitance of the net. This check ensures that the device does not drive more capacitance

than the device is characterized for.

Max Fanout: Fanout is the number of CMOS logic inputs that can be driven by one CMOS logic

output. It refers that how many inputs can be safely driven by a single output pin.

Lab Task

So far, we haven’t done any sort of timing analysis or optimization. In this part, we will try to

understand the pre-CTS timing reports and will try to optimize the violations that occurred during

the pre-CTS stage. Then we will create CTS and will route the design. After that, we will analyze

the post rout or post-CTS timing reports and will try to optimize the violations that occurred

during the post-CTS stage.

1. Now from the encounter terminal, restore the placement.enc database using the

following command.

encounter 1> source placement.enc

Page 117 of 133

Pre-CTS Timing Optimization

2. To check the summary of existing setup and DRV violations in the placement stage (also

known as the pre-CTS stage), use the following command

encounter 2> timeDesign -preCTS

A summary of timing violations will appear on the encounter terminal like the below

figure.

3. After checking summary reports from the encounter terminal, we need to check the

detailed reports of existing violations. A directory named timingReports will be created

and detailed violation reports will be generated inside that directory every time when we

use timeDesign command on the encounter. Check your pnr_lab directory whether

timingReports directory and violations reports are created or not like the below table.

timingReports

├── alu_4bit_preCTS_all.tarpt

├── alu_4bit _preCTS.cap

├── alu_4bit_preCTS_default.tarpt

├── alu_4bit _preCTS.fanout

├── alu_4bit _preCTS.length

Page 118 of 133

├── alu_4bit_preCTS_reg2reg.tarpt

├── alu_4bit _preCTS.summary

└── alu_4bit_preCTS.tran

 0 directories, 8 files

4. In the report of step 2 if there is any negative value in max_tran and max_cap, it indicates

that there is a violation in the design which must be optimized. From the report of step 2,

we can say, there are no violations in the design. If we get any violations on the design,

we have to use the following command for optimization.

encounter 3> optDesign -preCTS

Another optimized summary report will be generated on the encounter terminal where

we can check how many violations still remain after optimization.

5. As we run the pre-CTS optimized command on encounter, many changes happened to

the design like changes in the placement of cells and global routing. For that reason, we

need to save the design again using the following command

encounter 4> saveDesign placement_optimized.enc

Page 119 of 133

Clock Tree Synthesis

A clock tree is needed to be built in the design for balancing clock skew and latency after

optimizing the design in the placement stage (pre-CTS stage). It is built using a clock buffer

or inverter cells.

6. At first, we have to mention the clock name and its port name using the following

command

Encounter 5> create_ccopt_clock_tree -name clk -source clk

7. Now enter the following command which will give instructions to the tool to build a clock

tree.

encounter 6> ccopt_design -cts

8. To check the clock tree from the encounter, use the following command

encounter 7> ctd_win

A Clock Tree Debugger window will appear which shows the clock created by the

command used in step 11

9. After successfully building the clock tree, save the design to a different database name

using the following command.

encounter 8> saveDesign clock_tree_synthesis_optimized.enc

Page 120 of 133

Detail Routing

10. As a pre-CTS optimization is done in the placement stage and after that, we built the clock

tree again in the CTS stage, we need to perform detail routing again. To perform again

detail routing, use the following command again to the encounter terminal.

encounter 9> routeDesign

11. To check whether the detailed routing has been done or not, you can check the wiring

status of the signal routing by selecting a wire and then pressing Q. If the Wire status is

either Routed or fixed, detail routing is done successfully. If all the task has been

performed successfully, your encounter window will be like the following window.

12. After routing save the design using the following command.

encounter 10> saveDesign routeDesign.enc

Page 121 of 133

Post-Route Timing Optimization
13. To check the summary report of existing setup and DRV violations on the routing stage

(post-route stage), use the following commands.

encounter 11> setAnalysisMode -analysisType onChipVariation

encounter 12> timeDesign -postRoute

14. To check the summary report of hold violation from the post-route stage, use the

following command.

encounter 13> timeDesign -postRoute -hold

15. After using the above commands, a summary report will be shown on the encounter

terminal and detailed reports of violations will be generated inside the timingReports

Page 122 of 133

directory. Check the directory whether detail reports are generated or not like the below

figure.

timingReports

├── alu_4bit_postRoute_all.tarpt

├── alu_4bit _postRoute.cap

├── alu_4bit_postRoute_default.tarpt

├── alu_4bit _postRoute.fanout

├── alu_4bit _postRoute.length

├── alu_4bit_postRoute_reg2reg.tarpt

├── alu_4bit _postRoute.SI_Glitches.rpt

├── alu_4bit_postRoute.summary

 └── alu_4bit _postRoute.tran

0 directories, 9 files

16. To clean the existing setup and DRV violations at the post route stage, use the following

command.

encounter 14> optDesign -postRoute

After automatic optimization, updated reports will be generated inside the

timingReports directory.

Page 123 of 133

17. To clean existing hold violations, use the following command.

encounter 15> optDesign -postRoute -hold

18. After optimization, save the design using the following command.

encounter 16> saveDesign routeDesign_optimized.enc

Post Lab Task
1. What are the goals of CTS?
2. Why are buffers used in the clock tree?

3. How many routings are done in PnR?

4. Compare Setup and Hold time.

5. Find out the advantage of using inverter over buffer while building a clock tree.

6. What is clock skew and latency? How does skew affect both setup and hold violations?

7. Check the manual of report_clocks, selectPin, ccopt_design, routeDesign using the man

command.

Page 124 of 133

Lab-8: Physical Verification and Power Analysis

Using Encounter Digital Implementation System

The main objectives of this lab are:

● Familiarization with Physical Verification (DRC, Geometry and Connectivity Check)

● Familiarization with Power Analysis (IR Drops and Electromigration)

Introduction

This section will perform physical verifications to check whether the design layout is equivalent

to its schematic and checks the layout against process manufacturing guidelines provided by the

semiconductor fabrication labs to ensure it can be manufactured correctly. Some common

verification techniques are listed below. This lab will check the DRC, LVS, and ARC under Physical

Verification Steps.

Fig: Physical Verification flow

Design Rule Check (DRC)

Design Rules define shapes/size/spacing and many other complex rules of each metal layer. It

starts from the substrate to Newell to the op metal layers. DRC doesn’t ensure that the device

will work properly, it ensures it will get manufactured properly.

Layout versus schematic (LVS)

It checks for correct connectivity between the devices in the circuit. It is a method of verifying

that the layout of the design is functionally equivalent to the schematic of the design.

Page 125 of 133

ARC (Antenna Rule Check)

Checks for a large area of metals that might affect manufacturing. Ensure that the transistors of

the chip are not destroyed during fabrication. Using metal jogging or inserting a diode at the gate

can fix this.

Power Analysis

The power supply (VDD and VSS) in a chip is uniformly distributed through the metal rails and stripes

which is called Power Delivery Network (PDN) or power grid. Each metal layer used in PDN has finite

resistivity. When current flow through the power delivery network, a part of the applied voltage will be

dropped in PDN as per Ohm’s law. The amount of voltage drop will be V = I.R, which is called the IR drop.

We will check in this lab whether special nets are shorted or not, and whether power vias are created

properly, which will connect all the special nets.

Electromigration is the movement of atoms based on the flow of current through a material. If the current

density is high enough, the heat dissipated within the material will repeatedly break atoms from the

structure and move them. This will create both ‘vacancies’ and ‘deposits’. The vacancies can grow and

eventually break circuit connections resulting in open-circuits, while the deposits can grow and eventually

close circuit connections resulting in short-circuit. In this lab, we will check the signal net’s AC current limit

violations.

Lab Task

1. Log in to the server in the GUI mode and source the Cadence license file.
[Xlaunch (enable SSH)→putty (load server IP) → login → csh→ source ~/cshrc_q→ nautilus]

2. Open a terminal and make sure you are at the home directory of your account using the

command pwd.

[150205105@aust ~]$ pwd

3. Go to the directory lab_6/pnr_lab executing the command cd lab_6/pnr_lab

[150205105@aust ~]$ cd lab_6/pnr_lab

4. Make sure that the placement.enc database is present in the pnr_lab directory. Then

launch the Encounter tool from the same directory using the command encounter

[150205105@aust pnr_lab]$ encounter

Page 126 of 133

5. Now from the encounter terminal, restore the routeDesign_optimized.enc database

using the following command.

encounter 1> source routeDesign_optimized.enc

Filler Cell and Metal Filler
Filler cells are used to fill any spaces between regular library cells. They are needed when the

density of the required metal or layer has not met the foundry or fabrication requirement.

6. To add filler cells, execute Place → Physical Cell → Add Filler.

7. Then the Add Filler window will appear. Select all the filler cells from the Cell Lists of the

Select Filler Cells window and give the Prefix FILLER as shown in the following figure. Then

click OK.

Page 127 of 133

After adding filler cells, the design will be like the following figure.

8. After adding filler cells, we have to re-route the modified design using the following

command.

encounter 2> ecoRoute

Page 128 of 133

9. Now to add metal filler use the following command.

encounter 3> addMetalFill

After adding metal filler, the design will be like the following figure.

10. Now, to check the placement density and number of placed cells use the following

command.

encounter 4> checkPlace

Page 129 of 133

Physical Verification

11. After routing, the design must pass all physical verification stages. At first, we will check

all DRC (Design Rule Check) rules using encounter. Write the following command on the

encounter terminal.

encounter 5> verify_drc

If the design has a DRC violation, you can see the DRC markers (white cross) from the

encounter window. To check all the DRC violations, click on the Violation Browser icon

marked on below the figure.

Page 130 of 133

12. The following Violation Browser window will appear. In that window, all the DRC type and

their detail violation can be checked. Click on any of the violation it will take you to that

violation area.

13. To solve power net (VDD) and ground net (VSS) related violations, use the following

commands on the encounter terminal.

encounter 6> globalNetConnect VDD -pin VDD -instanceBasename * -verbose

encounter 7> globalNetConnect VSS -pin VSS -instanceBasename * -verbose

Page 131 of 133

14. Now to solve violations that occurred due to the shape of via, zoom into the violation area

and change the via type by clicking the “Shift+N” key.

15. Now clear all DRC markers from the encounter and Violation Browser window and again

check the DRC, using the following commands.

encounter 8> clearDrc

encounter 9> verify_drc

16. To check all violations related to the connectivity of the design, use the following

command.

encounter 10> verify_connectivity

17. To check geometry violations from the encounter, write the following command on the

encounter terminal.

encounter 11> verifyGeometry

18. To check ARC (Antenna Rule Check) using encounter, write the following command on

the encounter terminal.

encounter 12> verifyProcessAntenna

Power Analysis

19. To check whether the Power/Ground net is short or not use the following command on

the encounter terminal. The command checks short between

a. PG and PG nets

b. PG and signal nets

c. PG and other special net

encounter 13> verify_PG_short

20. To check all the single power via are generated correctly to connect each of the PG net

together.

encounter 14> verify_power_via

Page 132 of 133

21. The following command will check only the generated stacked power via on the design

and reports unconnected or weakly connected special nets.

encounter 15> verify_power_via -stacked_via

22. To prevent wire from self-heating or AC signal electromigration, signal interconnects

should be analyzed for their AC current carrying capacity and measured against the AC

current limits specified by the foundry. Use the following command to check AC current

violations on signal nets

encounter 16> verifyACLimit

23. Now if you optimized all the violations save the final design using the following command

on the encounter terminal.

encounter 17> saveDesign finalDesign.enc

Post Lab Task
1. Discuss the importance of filler cell and metal filler?

2. How the ARC problem can be solved?

3. What is IR drop? Define is Static and Dynamic power dissipation?

4. How LVS comparison is dine in digital design?

5. Check the manual of verify_drc, verify_connectivity, verifyGeometry,
verifyProcessAntenna, verify_PG_short, verify_power_via, verifyACLimit using the man
command.

Page 133 of 133

References and Acknowledgment

The following resources have been consulted while preparing the manual.

▪ Stephen Brown and Zvonko Vranesic , “Fundamentals of Digital Logic with Verilog

Design”.

▪ Erik Brunvand , “Digital VLSI Chip Design with Cadence and Synopsys CAD tools”

▪ M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for Digital, Memory,

and Mixed-Signal VLSI Circuits”, Kluwer Academic Publishers, , ISBN: 0-7923-7991-8.

▪ A. B. Kahng, J. Lienig, I. L. Markov, J. Hu, “VLSI Physical Design: From Graph Partitioning

to Timing Closure. Springer Publishers”, ISBN 978-90-481-9590-9.
▪ https://linuxhint.com/
▪ https://www.synopsys.com/glossary/what-is-static-timing-analysis.html?fbclid=IwAR1Rs0F3NMyxNs-

7y4FacKjfbu5M08XzhOTps_eZaTvqueUS4DMNgRzenhw

Prepared by:

I. Adnan Amin Siddiquee
Lecturer,

Department of EEE,

Ahsanullah University of Science and Technology,

Dhaka, Bangladesh

II. Partha Sanjoy Dev
Engineer,

Ulkasemi Limited, Dhaka, Bangladesh

Special Thanks to:

I. Dr. Satyendra Nath Biswas
Professor,

Department of EEE,

Ahsanullah University of Science and Technology,

Dhaka, Bangladesh

II. Mahmudul Hasan Shuvo
Assistant Engineer (former),

Ulkasemi Limited, Dhaka, Bangladesh

https://linuxhint.com/
https://www.synopsys.com/glossary/what-is-static-timing-analysis.html?fbclid=IwAR1Rs0F3NMyxNs-7y4FacKjfbu5M08XzhOTps_eZaTvqueUS4DMNgRzenhw
https://www.synopsys.com/glossary/what-is-static-timing-analysis.html?fbclid=IwAR1Rs0F3NMyxNs-7y4FacKjfbu5M08XzhOTps_eZaTvqueUS4DMNgRzenhw

